Menoufia University
Faculty of Engineering, Shebin El-Kom, Basic Engineering science Department First Semester Examination, 2016-2017
Date of Exam: 31/12/2016

Subject: Introduction in Mathematical
Code : BES 522
Year : Postgraduate students
Time Allowed : 3 hours
Total Marks: 100 marks

Answer the following questions

1) Two equal masses are connected by means of a spring and two other identical springs fixed to rigid supports on either side (Fig. 1), permit the masses to jointly undergo simple harmonic motion along a straight line, so that the system corresponds to two coupled oscillations. Assume that $\boldsymbol{m}_{1}=\boldsymbol{m}_{\mathbf{2}}=\boldsymbol{m}$ and the stiffness constant is \boldsymbol{k} for both the oscillators.
(a) Form the differential equations for both the oscillators and solve the coupled equations and obtain the frequencies of oscillations.
(b) Discuss the modes of oscillation and sketch the modes.

Fig. Coupled oscillator
2) Find the eigen values and eigen functions of the equation:

$$
y^{\prime \prime}-4 \lambda y^{\prime}+4 \lambda^{2} y=0, y(0)=0, y(1)+y^{\prime}(1)=0
$$

3) Find the general solution of Bessel's differential equation
where $\boldsymbol{n} \neq 0, \pm 1, \pm 2, \ldots$

$$
z^{2} \boldsymbol{Y}^{\prime \prime}+z \boldsymbol{Y}^{\prime}+\left(z^{2}-n^{2}\right) \boldsymbol{Y}=0
$$

4)Determine the singular points of each of the following differential equation and specify whether they are regular or irregular.
(a) $z^{2} y^{\prime \prime}+z y^{\prime}+\left(z^{2}-n^{2}\right) y=0$
(b) $(\mathrm{z}-1)^{4} y^{\prime \prime}+2(\mathrm{z}-1)^{3} y^{\prime}+y=0$
(c) $z^{2}(1-z) y^{\prime \prime}+y^{\prime}-y=0$
5) Let $u(x, t)$ represent the temperature of a very thin rod of length π, which is placed on the interval $0 \leq x \leq \pi$, at position x and time t. The PDE which governs the heat distribution is given by $\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}=\frac{1}{\boldsymbol{k}} \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}}$,
where u, x, t and k are given in proper units. We further assume that both ends are insulated; that is, $u(0, t)=u(\pi, t)=0$ are impose "boundary condition" for $t \geq 0$. Given an initial temperature distribution of $u(x, 0)=2 \sin 4 x-11 \sin 7 x$, for $0 \leq x \leq \pi$, use the technique of separation of variables to find a (non-trivial) solution, $u(x, t)$.
6) Show that the following special functions:
i) $\Gamma(\mathbf{m}) \Gamma(1-m)=\frac{\pi}{\sin m \pi}$
ii) $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
iii) $\int_{0}^{\infty} \sqrt{y} e^{-y^{3}} d y$
iv) $F(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}$

